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This paper presents a methodology for estimating seismic retrofit costs from histor-4

ical data. In particular, historical retrofit cost data from FEMA 156 is used to build5

a generalized linear model (GLM) to predict retrofit costs as a function of building6

characteristics. While not as accurate as an engineering professional’s estimate, this7

methodology is easy to apply to generate quick estimates and is especially useful for8

decision makers with large building portfolios. Moreover, the predictive modeling9

approach provides a measure of uncertainty in terms of prediction error. The paper10

uses prediction error to compare different modeling choices, including the choice of11

distribution for costs. Finally, the proposed retrofit cost model is implemented to es-12

timate the cost to retrofit a portfolio of federal buildings. The application illustrates13

how the choice of distribution affects cost estimates.14

INTRODUCTION15

A decision maker faced with the task of estimating the cost of a seismic retrofit for a single16

building will most likely hire an engineering consulting firm to evaluate the building and deter-17

mine the cost of retrofitting the building.18

Suppose the decision maker wants to obtain retrofit cost estimates for a portfolio of several19

hundred, or even several thousand, buildings. The costs and time associated with estimating20

retrofit costs for a large number of buildings may prevent the decision maker from making21

timely budgeting decisions. If a decision maker simply wants to know whether retrofitting the22

building portfolio is a good investment, there is a non-trivial cost associated with obtaining the23

information needed to make a decision.24

This paper presents a predictive model to obtain retrofit cost estimates based on historical25

retrofit cost data. Given a set of building characteristics such as building size and age, the de-26

cision maker can predict the average retrofit cost for the building. Importantly, the predictive27
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model is agnostic to the choice of retrofit action, making predictions using building character-28

istics as predictors.29

The predictive model can be used for a single building or for a large portfolio of buildings,30

providing a quick way to estimate retrofit costs. While these predictions have higher uncertainty31

compared to estimates from an engineering consulting professional, upper and lower bounds on32

predictions are straightforward to obtain from the model and provide a measure of the degree33

of uncertainty. An application to an actual building portfolio illustrates the approach, as well as34

some of the modeling choices discussed in the paper.35

BACKGROUND AND LITERATURE36

The historical retrofit cost data used in this paper was originally collected for FEMA 15637

(FEMA, 1994) and is freely available online. In particular, the data can be found as part38

of FEMA’s archived Seismic Rehabilitation Cost Estimator (SRCE) software, (FEMA, 2013–39

2014). Further information on the data set is provided in the section “The Training Data.”40

Elements of the predictive-modeling methodology, inspired by FEMA 156 and FEMA 15741

(FEMA, 1995), are developed by the authors in Fung et al. (2017). FEMA 156 made two major42

contributions: (1) the collection of a reliable data set of retrofit costs and building characteris-43

tics; and (2) methods for estimating average retrofit costs, including a linear regression model.44

The linear regression model in FEMA 156 estimates average retrofit cost using building45

characteristics, such as building size and age, as predictors. FEMA 156 and FEMA 157 present46

the model, but do not test how well it performs in predicting retrofit costs. Fung et al. (2017)47

show that a model with a different set of predictors, outperforms the FEMA 156 model in48

the sense of having a lower prediction error in predicting retrofit costs. For instance, Fung49

et al. (2017) show that including an indicator for whether a building is deemed historic as an50

additional predictor also lowers prediction error.51

In a series of papers, Jafarzadeh et al. (2013b,a, 2014) collect and analyze a database on52

retrofit costs for 158 public schools in Iran. Jafarzadeh et al. (2014) provides the associated53

data, as well as a detailed discussion of the data collection effort and a description of the data.54

While the database is fairly detailed and more modern than the SRCE data, it is not applicable55

for predicting retofit costs for buildings in the United States because building codes differ across56

countries.57
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Jafarzadeh et al. (2013b) analyze the data using standard linear regression, while Jafarzadeh58

et al. (2013a) apply artificial neural networks to predicting costs. The main objective of the59

papers is to explore which predictors matter most for retrofit costs (Jafarzadeh et al., 2013b)60

and the parameterizations that are likely to minimize prediction error (Jafarzadeh et al., 2013a).61

While neural networks are a promising direction for predicting retrofit costs, it is difficult to62

draw conclusions on the application of neural networks for cost prediction from Jafarzadeh63

et al. (2013a). First, it is unclear whether a neural network can provide much improvement over64

standard linear regression with a set of only 158 training samples. More importantly, the au-65

thors use the hold-out method for both model selection and evaluation, potentially problematic66

approaches as discussed below.67

More recently, Nasrazadani et al. (2017) collected their own database of 167 retrofits of68

masonry school buildings in Iran. The authors use Bayesian linear regression in order to predict69

retrofit costs. The main objective is to compare retrofit costs for three retrofit actions for a given70

level of expected gain in performance, measured as the change in lateral strength after retrofit.71

In addition to the performance gain, Nasrazadani et al. (2017) find that a building’s pre-retrofit72

value is an important predictor of retrofit cost.73

Finally, while the focus of this paper is on seismic risk mitigation (i.e., pre-event), several74

recent papers study actual repair and retrofit costs for buildings that are damaged in the after-75

math of a seismic event. Di Ludovico et al. (2017a,b) obtained estimates of repair costs for76

residential buildings damaged in the 2009 L’Aquila earthquake in central Italy. Del Vecchio77

et al. (2018) compare actual repair costs from buildings damaged in L’Aquila to predictions78

based on FEMA P-58. Finally, Cremen and Baker (2019) validate component-level loss predic-79

tions based on FEMA P-58 to actual losses experienced in the 2011 Christchurch earthquake in80

New Zealand.81

CONTRIBUTIONS82

This paper extends the methodology developed in Fung et al. (2017) in three key directions:83

• Model assumptions: The predictive methodology developed in Fung et al. (2017) is84

based on a standard linear regression model. This paper uses a generalized linear model85

(GLM) and compares GLM to standard linear regression, measuring model performance86

in terms of prediction error. The key advantage of GLM over standard linear regression87

is that predictions are more easily interpretable, as discussed below.88
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• Model selection and evaluation: Fung et al. (2017) evaluate models using the “hold-out”89

method, where a subset of the data is held out when fitting (or “training”) a model. Thus,90

the hold-out method does not use all of the available data to train a model. Moreover,91

Fung et al. (2017) focus on model evaluation, assessing how well a model performs,92

rather than model selection, choosing the best among several competing models. This93

paper uses nested K-fold cross-validation to perform both model selection and model94

evaluation. A key advantage of K-fold cross-validation is that it uses all of the available95

data to train each model.96

• Outcome of interest: Fung et al. (2017) focus on predicting total construction costs97

associated with a retrofit, which can include costs associated with repairing damage due98

to other environmental impacts and with removing hazardous material in addition to costs99

of structural mitigation. Fung et al. (2018) apply the methodology to predict structural100

retrofit costs only. The current paper compares model performance in predicting structural101

and total costs.102

In addition, the impacts of some of the modeling assumptions on retrofit cost predictions are103

illustrated on an actual building portfolio. The results demonstrate the flexibility and applicabil-104

ity of the predictive modeling approach for seismic risk mitigation. In particular, the illustration105

of key modeling decisions and the tradeoffs associated with those decisions should be valuable106

for owners of building portfolios during the planning phase (that is, pre-evaluation) of a poten-107

tial seismic retrofit program. Such easily obtainable order of magnitude estimates can assist in108

making the decision to pursue further action, such as an evaluation.109

MODEL DEVELOPMENT110

This section develops the predictive retrofit cost-estimating model, including a discussion of the111

predictors, and describes nested K-fold cross-validation, used for model selection and evalua-112

tion.113

PREDICTIVE MODEL114

Suppose a decision maker has information on building characteristics, such as building size and115

age, for each building in a portfolio. The decision maker would like to know the cost to retrofit116

each building, given the building characteristics. That is, the decision maker would like to use117

the building characteristics, X , as predictors to predict retrofit cost, Y , as Ŷ = f̂(X).118
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The goal of prediction is to obtain an estimator f̂ that can produce predictions Ŷ for any in-119

put X (James et al., 2013). Prediction is applicable when the objective is to obtain an outcome120

of interest that is not easily obtainable. The estimator f̂ is obtained using existing informa-121

tion on the relationship between X and Y ; for instance, from buildings that have already been122

retrofitted. Once the estimator f̂ is obtained, the decision maker can simply plug in any X to123

obtain predictions for the buildings of interest.124

FEMA 156 proposes a predictive model of retrofit cost (in dollars per square foot), Ŷ =125

f̂(X), where X includes all of the predictors given in Table 1, except for the Historic indicator.126

In addition, the FEMA 156 model includes interactions between each predictor and build-127

ing type, b. Interactions capture the combined effects of two (or more) predictors; e.g., the128

interaction between building type and age captures the possibility that retrofit costs for older129

unreinforced masonry (URM) buildings are different than retrofit costs for newer URM build-130

ings as well as for older buildings of other types. Such full-interaction models, in which each131

predictor is interacted with building type, effectively result in a large number of predictors. In132

practice, it is equivalent to training separate models for each building type.133

Table 1. Definition of outcome, Y , and set of predictors, X , used in this paper.

Variable Definition

Y Retrofit cost (in dollars per square foot)

s Seismicity (e.g., peak ground acceleration)

p Performance objective (e.g., life safety)

b Building type (e.g., unreinforced masonry, wood frame)

Area Building area (in square feet)

Age Building age (in years)

Stories Number of above and below ground stories

Occup Occupancy during retrofit (e.g., vacate occupants from building)

Historic Is building deemed historic? (yes or no)

Fung et al. (2017) show that full interactions (equivalently, separate regressions by building134

type) are unnecessary. In particular, Fung et al. (2017) show that a simpler model, without135

building-type interactions, results in lower prediction error. The only interaction that Fung et al.136

(2017) include is the interaction between seismicity and performance objective. The logic is137
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that the combined effects of seismicity and the performance objective also affect retrofit costs.138

In addition, Fung et al. (2017) include a Historic indicator to account for the fact that his-139

toric buildings are treated differently (often, uniquely) in a retrofit. The results in Fung et al.140

(2017) suggest that this model outperforms the FEMA 156 model. In this paper, the same set of141

predictors is used to train the predictive models.142

CHOOSING AN ESTIMATOR143

This paper considers two types of estimators. The first is obtained from standard linear regres-144

sion, which assumes that the outcome of interest is normally distributed. The second is obtained145

from a Generalized Linear Model (GLM), which relaxes the assumption that the outcome is nor-146

mally distributed. It should be noted that the choice of an estimator is not a choice of a model147

for the true data generating process for Y . In other words, it is not meant to be an accurate,148

physical model of Y . Rather, the goal is to obtain an estimator that will predict E[Y |X] with149

high accuracy.150

Standard linear regression, or Ordinary Least Squares (OLS), combines a linear estimator,151

Ŷ = f̂(X) = Xβ̂, with the assumption that the outcome, Y , follows a normal distribution,152

conditional on X (to be precise, the distributional assumption is only required for inference;153

for instance, for deriving confidence and prediction intervals). The estimator is called linear154

because it is a linear combination of the predictors, X .155

The standard linear regression model estimated in Fung et al. (2017) is:

ln(Y ) = β0 + βs + βp + βsp + βb + β1 ln(Area) + β2 ln(Age)

+ β3 ln(Stories) + β4Occup + β5Historic + ε
(1)

where Y is assumed to follow a log-normal distribution, i.e., ln(Y )|X follows a normal distribu-156

tion with E[ln(Y )|X] = Xβ, for the coefficient vector β = {β0, βs, . . . , β5}, and E[ε|X] = 0,157

i.e., the predictors X are uncorrelated with any unobserved variation in Y . Note that the error158

term, ε, captures the effect of predictors that are not included in the model.159

The Generalized Linear Model (GLM) is an extension of standard linear regression that uses160

a linear predictor but does not assume the outcome follows a normal distribution. In particular,161

the outcome may follow any distribution in the exponential family, which includes the normal162

distribution (Coxe et al., 2013).163

A GLM has three components: (1) a random component, which refers to the distribution of164
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the outcome, Y ∼ FY |X ; (2) a systematic component, which refers to the linear combination of165

predictors, Xβ; and (3) an invertible link function, which specifies the relationship between the166

random and systematic components, g(E[Y |X]) = Xβ. Note that the link function, g, allows167

for potentially nonlinear relationships between the mean of Y and the predictors, X .168

The standard linear regression model is a special case of a GLM. Consider the model169

given in Eq. (1). The random component is the normal distribution of the outcome variable,170

ln(Y )|X ∼ N(Xβ, σ2) where σ2 ≡ V ar(ε|X). The systematic component refers to the right-171

hand side of Eq. (1), the linear combination of predictors. Finally, note that the link function is172

the identity function, since g(E[ln(Y )|X]) = E[ln(Y )|X] = Xβ.173

More generally, one can use knowledge about the outcome of interest in choosing a GLM174

specification. For instance, if the outcome of interest is cost, a reasonable choice of distribution175

might be skewed to the right, with much of the mass concentrated on smaller values of cost176

and a long right tail. Note that while the normal distribution is symmetric around the mean, the177

log-normal distribution is right-skewed.178

Moreover, the distribution of cost should be non-negative. Note that while normally dis-179

tributed variables can take positive or negative values, the OLS model assumes Y |X follows a180

log-normal distribution and, thus, must be non-negative. However, this forces the outcome of181

interest to be ln(Y ) rather than Y itself.182

Alternative choices of distribution in the exponential family include the gamma distribu-183

tion and the inverse normal distribution. Each satisfies the desired properties: the distributions184

are right-skewed and random variables can only take positive values. An advantage of using a185

gamma or inverse normal distribution, rather than the log-normal distribution, is that the out-186

come of interest is Y itself rather than ln(Y ). Other common distributions in the exponential187

family do not satisfy the desired properties.188

Since Xβ may take postive or negative values, a suitable link function must ensure that

E(Y |X) is positive. For a model with gamma or inverse normal distribution, the natural loga-

rithm is a suitable link function. That is, g(E[Y |X]) = ln(E[Y |X]) = Xβ, or:

ln(E[Y |X]) = β0 + βs + βp + βsp + βb + β1 ln(Area) + β2 ln(Age)

+ β3 ln(Stories) + β4Occup + β5Historic
(2)

The difference between Eq. (1) and Eq. (2) is that Eq. (1) is a model for the mean of the log,189

E[ln(Y )|X], while Eq. (2) is a model for the log of the mean, ln(E[Y |C]), which are not190

equivalent in general. An important implication is that applying the exponential function to the191
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right-hand side of Eq. (2) yields mean cost, E[Y |X], which is directly interpretable in dollars192

per square foot. In contrast, applying the exponential function to the right-hand side of Eq. (1)193

yields exp{E[ln(Y )|X]}, which is much more difficult to interpret. This is the main advantage194

of the gamma and inverse normal distributions for modeling costs.195

ESTIMATING PREDICTION ERROR196

Root Mean Squared Error (RMSE) is used as the measure of prediction error for new data,

known as out-of-sample prediction error. Let β̂ denote the coefficient vector obtained from

training the model (i.e., from estimating f̂ ). The RMSE is estimated from a set of data of size

m that is not used to train the model as:

RMSE ≡
(

1

m

m∑
i=1

(β̂Txi − g(Yi))2
) 1

2

(3)

Note that RMSE as defined in Eq. (3) is estimated on the scale of the link function applied to

the outcome variable, g(Y ). Alternatively, RMSE may be estimated using the inverse of the

link function, with terms (g−1(β̂Tx)− Y )2. For instance, if g = ln, then g−1 = exp and RMSE

is on the original scale of the outcome, Y , as shown in Eq. (4).

RMSE (dollars) ≡
(

1

m

m∑
i=1

(g−1(β̂Txi)− Yi)2
) 1

2

(4)

To obtain a reasonable estimate of RMSE, Eq. (3) should be estimated on data that has not197

been used to train the model. Otherwise, the model will already be familiar with the data and198

estimates of model performance will be biased. However, the purpose for estimating RMSE199

must also be taken into account. In particular, the data used to evaluate how a particular model200

will perform on new data (model evaluation) should not be used to also compare and select201

different models (model selection); (Guyon and Elisseeff, 2003). The potential problem is that202

data used for model selection is inadvertently used to train the model, biasing estimates of203

model performance.204

K-fold cross-validation is a method for estimating RMSE. The idea is to split the training205

data into K mutually exclusive subsets, or “folds,” iteratively using each fold as a test set while206

using the remaining K − 1 folds as training data (Arlot and Celisse, 2010). A key advantage of207

this approach is that it uses all of the available data to train and to test the model. The estimate208

of Eq. (3) is obtained by averaging RMSE estimates across each fold.209
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In order to perform model selection and model evaluation together, this paper uses nested210

K-fold cross-validation (Krstajic et al., 2014). Nested K-fold cross-validation applies K-fold211

cross-validation for model selection before applying K-fold cross-validation for model eval-212

uation. Loosely, this may be thought of as performing an additional K-fold cross-validation213

within each of the K folds, so that model selection is nested within model evaluation. The idea214

is to select the best model first and to evaluate its performance after selection. The procedure215

guarantees that different parts of the data are used for each step, and still uses all of the available216

data to train and to test models. RMSE estimates are obtained by averaging across all iterations.217

THE TRAINING DATA218

As mentioned in the introduction, the training data used in this paper was originally collected for219

FEMA 156. The publicly available version of the data (the SRCE data) includes 1978 buildings,220

compared to the 2088 collected for FEMA 156. The SRCE data set is missing an important221

building characteristic that is used in FEMA 156: building occupancy class. Nevertheless, the222

discussion in FEMA 156 suggests this data set should be representative of commercial and223

residential buildings in the United States and Canada.224

Table 2 presents summary statistics for retrofit costs and for the non-categorical building225

characteristics that appear in Eq. (1) and Eq. (2), including building area (in square feet), build-226

ing age (in years), and building height (in stories). Note that total costs are 44% higher than227

structural costs on average and have much higher variability. The building characteristics area,228

age, and stories also exhibit large variability and cover a broad spectrum of buildings. Finally,229

Table 2 also presents a measure of seismicity, PGA, which is discussed below.230

Table 2. Summary statistics for outcomes of interest and select predictors in the training (SRCE) data,
with N = 1526 excluding Canadian buildings (1 ft = 0.3048 m).

Variable Minimum Mean Median Maximum Standard deviation

Structural cost ($/sq ft) 0.49 36.03 23.33 675.42 44.74

Total cost ($/sq ft) 0.49 52.13 28.84 1688.55 81.95

Area (1000 sq ft) 0.15 68.98 28.67 1430.30 113.26

Age 2.00 44.29 40.00 153.00 22.13

Stories 1.00 3.12 2.00 38.00 2.99

PGA (gn) 0.01 0.27 0.36 0.58 0.15
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Note that the sample size in Table 2, N = 1526, corresponds to buildings within the con-231

tiguous United States. In particular, it excludes 187 buildings in Canada and 14 buildings in232

the US territories due to the challenges in obtaining consistent seismic hazard data across all233

locations (no buildings in Alaska or Hawaii appear in the SRCE data). Another 190 buildings234

are excluded due to missing data (e.g., building age).235

Costs in the original SRCE data are normalized to average construction costs in California236

for 1993. Following Fung et al. (2017), this paper presents costs normalized to 2016 national237

average construction costs, using the Engineering News Record’s Building Construction Index238

(BCI) (ENR, 2017). It is worth noting that retrofit engineering practice has evolved since the239

SRCE data was collected, likely decreasing the rate of growth in retrofit costs relative to the240

growth in the material and labor costs represented by the BCI.241

Total construction costs include costs of structural mitigation, as well as additional costs242

triggered by the retrofit, including: (1) costs associated with compliance with the Americans243

with Disabilities Act of 1990 (ADA 1990); (2) costs associated with removal of asbestos and244

other hazardous material; (3) costs associated with repairing damage or deterioration; and (4)245

non-structural mitigation costs. Total costs vary greatly. Moreover, it is difficult to say how they246

correspond to costs today (e.g., compliance with ADA 1990). In contrast, structural costs are247

the construction costs associated with the retrofit of structural components.248

Fig. 1 presents a histogram for structural retrofit costs in the SRCE data. Note the distribu-249

tion is right-skewed, with a very long and thin right tail. While the histogram approximates the250

unconditional distribution of costs, it nevertheless illustrates the properties a cost distribution is251

expected to exhibit.252

The measure of seismicity provided in the SRCE data is based on outdated seismic haz-253

ard maps from ATC-3 (ATC, 1978). In practice, decision makers will use more recent seismic254

hazard maps, such as those produced by the US Geological Survey (USGS). The measure of255

seismicity used in this paper is based on USGS peak ground acceleration (PGA) as a fraction256

of standard gravity (gn) with a 10% probability of exceedance in 50 years (USGS, 2014). In257

particular, PGA is averaged at the county level, because that is the finest location information258

provided in the SRCE data, and weighted by Census-tract population as a proxy for building259

density (Fung et al., 2017). There is no claim that this is the best measure of regional seismicity260

for a building. A decision maker may choose to use another measure if that is desired. For in-261

stance, another measure that may contrinute to retrofit cost is seismicity at the time the building262
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Figure 1. Histogram of structural retrofit costs from the training (SRCE) data. Costs are in dollars per
square foot (1 ft = 0.3048 m).

was constructed (since this data is not readily available for the SRCE data, it is expected that263

building age acts as a proxy for this information). The important point is to be able to capture264

the variation in seismic risk each building faces.265

PGA for the buildings in the training data is shown on the last line of Table 2. Note that266

PGA ranges from a minimum of 0.01 to a maximum of 0.58, with mean PGA of 0.27. Given267

PGA, the buildings are assigned to one of four seismicity categories as summarized in Table 3:268

“Low” seismicity corresponds to PGA < 0.1; “Medium” seismicity corresponds to PGA ∈269

[0.1, 0.2); “High” seismicity to PGA ∈ [0.2, 0.4); and “Very High” seismicity is PGA >= 0.4.270

These values are based on FEMA 156’s definitions. Note that buildings in the training data are271

roughly evenly distributed across each seismicity category.272

Table 3. Definition of seismicity categories used in this paper, as a function of PGA (gn), and their
relative shares in the training (SRCE) data.

Seismicity Lower bound Upper bound Count Percentage

Low (L) 0.0 0.1 345 23%

Moderate (M ) 0.1 0.2 339 22%

High (H) 0.2 0.4 414 27%

Very High (V H) 0.4 maxPGA 428 28%
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The performance objective categories represented in the SRCE data are defined in FEMA273

156 as follows: Life Safety (LS) “allows for unrepairable damage as long as life is not jeop-274

ardized and egress routes are not blocked;” Damage Control (DC) “protects some feature or275

function of the building beyond life-safety, such as protecting building contents or preventing276

the release of toxic material;” and Immediate Occupancy (IO) “allows only minimal post-277

earthquake damage and disruption, with some nonstructural repairs and cleanup done while the278

building remains occupied and safe.” Since DC is no longer used and is not directly compa-279

rable to current performance objectives, this paper focuses on predicting LS and IO. Table 4280

presents the number and percentage of each performance objective category in the SRCE data.281

Note that over half of the training data corresponds to a target performance objective of LS.282

Table 4. Performance objective by number and percentage in the training (SRCE) data.

Performance objective Count Percentage

LS 822 53.9%

DC 444 29.1%

IO 260 17.0%

The term Occup in Table 1 represents what happens to occupants during retrofit construction283

and is defined as follows: In-place (IP ) means that work is scheduled around normal hours of284

occupancy; Temporarily removed (TR) means that occupants are moved to another room in285

the building during construction; and Vacant (V ) means that the building is completely vacated286

during construction. In terms of construction costs, completely vacating the building is the287

lowest-cost option, while leaving occupants in-place is the most expensive option. However,288

in practice occupant relocation costs would also be taken into account, potentially making the289

decision to vacate the building less cost-effective. Table 5 summarizes each occupancy category290

for the training data. The majority of cost estimates in the training data represent retrofits for291

which occupants have been temporarily removed.292

Building historic status, represented by the variable Historic, simply indicates whether or293

not a building is deemed historic (and, therefore, must be treated carefully during a retrofit). In294

particular, Historic buildings are expected to cost more to retrofit than other buildings, all else295

equal, because of the need to preserve the structure and character of the building. In the training296

data, 155 buildings, or 10.2%, deemed historic.297

Finally, Table 6 presents the 15 building construction types in the SRCE data. Following298
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Table 5. Occupancy during retrofit by number and percentage in the training (SRCE) data.

Occupancy during retrofit Count Percentage

V 267 23.2%

TR 647 56.3%

IP 235 20.5%

FEMA 156, each building type is assigned to one of eight building groups, based on structural299

similarities, as shown in Table 6. Strictly speaking, Eq. (1) and (2) each use building group300

rather than type.301

Table 6. Building types, groups, and their shares in SRCE data.

Building Group Building type Model name Count Percentage

1 URM Unreinforced Masonry 459 30.08%

W1 Wood Light Frame 40 2.62%
2

W2 Wood (Commerical or Industrial) 47 3.08%

PC1 Precast Concrete Tilt Up Walls 51 3.34%
3

RM1 Reinforced Masonry with Metal or Wood Diaphragm 51 3.34%

C1 Concrete Moment Frame 103 6.75%
4

C3 Concrete Frame with Infill Walls 254 16.64%

5 S1 Steel Moment Frame 74 4.85%

S2 Steel Braced Frame 28 1.83%
6

S3 Steel Light Frame 11 0.72%

7 S5 Steel Frame with Infill Walls 107 7.01%

C2 Concrete Shear Wall 247 16.19%

PC2 Precast Concrete Frame with Infill Walls 12 0.79%

RM2 Reinforced Masonry with Precast Concrete Diaphragm 10 0.66%8

S4 Steel Frame with Concrete Walls 32 2.10%

MAIN RESULTS302

This section presents predicition error estimates for several modeling choices, using K-fold303

cross-validation with K = 10 folds. RMSE estimates are obtained by averaging prediction304
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error across the folds. Coefficient estimates, β̂, are shown in Appendix Table A2.305

CHOICE OF DISTRIBUTION306

One of the first modeling choices a decision maker will make is the choice of distribution.307

As shown in Fig. 1, a model for cost should use a distribution that is right-skewed and that308

guarantees the outcome of interest does not take negative values.309

This section considers a GLM with systematic component given in Eq. (2) and the choice310

of distribution for the outcome. The choices considered are the normal distribution with link311

function g = ln; the gamma distribution with link g = ln; and the inverse normal distribution312

with link g = ln.313

The choice is therefore between a symmetric distribution for Y , which allows Y to take314

positive or negative values, and a skewed distribution for Y , which restricts Y to take only315

positive values. Note that the normal distribution with log link is not equivalent to standard316

linear regression, since it is a model for ln(E[Y |X]) = Xβ. Table 7 presents the estimates of317

RMSE and its standard deviation, σRMSE , assuming the outcome of interest is structural cost.318

Estimates of RMSE and σRMSE are presented on the original (dollars per square foot) scale of319

the outcome, as in Eq. (4).320

Table 7. Model selection for three choices of outcome distribution, when the outcome is structural cost
in dollars per square foot (1 ft = 0.3048 m). RMSE estimates and standard deviation of RMSE estimates,
σRMSE , are in dollars per square foot. The GLM with gamma distribution, with the lowest RMSE, is
the chosen model.

Model RMSE σRMSE

GLM-Gamma 40.43 9.75

GLM-Normal 41.66 8.97

GLM-Inverse Normal 41.87 9.13

The GLM with gamma distribution has the lowest RMSE and can therefore be interpreted321

as the preferred model. However, the RMSE for the other GLMs are only about 3% to 3.5%322

larger. It is difficult to conclude that the gamma model is superior, especially when considering323

σRMSE . Given that these are noisy estimates of RMSE, it is plausible that a different draw of324

the data could result in choosing the normal or inverse normal model.325

The lesson is that model selection is not always straightforward. Models should be chosen326
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for interpretability and for coherence with their context. In this case, retrofit costs are highly327

skewed and should not take negative values. While the results do not strongly suggest that328

the GLM with gamma distribution is superior, they do suggest that this choice of distribution is329

reasonable. The inverse normal distribution, which is more skewed than the gamma distribution,330

would also be reasonable.331

OLS VS GLM332

Another decision is whether it is necessary to use a GLM, or whether a standard linear regression333

model (OLS) would perform just as well. This section evaluates each of these models for their334

expected out-of-sample performance.335

Strictly speaking, the outcome in Eq. (1), ln(Y ), is not the same as the outcome in Eq. (2),336

Y . Thus, model selection as performed in the preceding section cannot be performed. This is337

because each model has a different task: the task of the OLS model is to predict E[ln(Y )|X],338

while the task of the GLM is to predict ln(E[Y |X]).339

Table 8 presents the results of model evaluation, that is, estimating each model’s expected340

out-of-sample performance, for the standard linear regression model, as well as the GLM mod-341

els presented in the preceding section, when the outcome is structural cost in dollars per square342

foot. The results suggest that the GLM with gamma distribution is expected to have the best343

out-of-sample performance for its prediction task than any of the other models.344

Table 8. Model evaluation: expected out-of-sample performance for OLS and three GLM specifications,
when the outcome is structural cost in dollars per square foot (1 ft = 0.3048 m). Actual and predicted
mean cost, RMSE, and σRMSE are in dollars per square foot. The GLM with gamma distribution is
expected to have the best out-of-sample performance for its prediction task than any of the other models.

Model Predicted cost RMSE σRMSE

Actual cost 36.03 - -

GLM-Gamma 36.19 40.42 11.18

GLM-Normal 33.18 41.48 10.31

GLM-Inverse Normal 37.37 41.76 10.73

OLS 24.65 42.30 12.44

For ease of presentation, predictions, RMSE estimates, and σRMSE are given in dollars345

per square foot. OLS estimates in dollars per square foot are obtained by a naive application346
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of the exponential function to predicted values. However, it should be noted that this naive347

transformation is biased (Moran et al., 2007).348

The table also presents the actual mean structural retrofit cost in dollars per square foot from349

the training data (the same value from Table 2). The results of model evaluation suggest that350

the GLM with gamma distribution makes predictions closest to the true value. Moreover, the351

GLM with normal distribution tends to underestimate costs, while the GLM with inverse normal352

distribution tends to overestimate costs. OLS, on the other hand, severely underestimates costs.353

For comparison, Table 9 presents predicted cost and prediction error on the log scale. The354

results in Table 9 suggest that the standard linear regression model has the lowest RMSE and355

thus is better at its prediction task than the GLMs are at their prediction tasks, in contrast to the356

results in Table 8. It might be tempting to conclude that the standard linear regression model,357

given in Eq. (1) is better than the GLM given in Eq. (2).358

Table 9. Model evaluation: expected out-of-sample performance on log scale, when the outcome is
structural cost. The results suggest that OLS provides the best out-of-sample performance in its task,
predicting E[ln(Y )|X], than the other models in their tasks, predicting ln(E[Y |X]).

Model Predicted log cost RMSE σRMSE

Actual log cost 3.05 - -

GLM-Gamma 3.39 1.06 0.06

GLM-Normal 3.07 1.07 0.07

GLM-Inverse Normal 3.41 1.08 0.06

OLS 2.98 0.97 0.04

Nevertheless, in addition to the fallacy that these RMSE estimates may be used for model359

selection, one must again be sure to use a model that is appropriate for the problem. While OLS360

may appear to be better, it may not actually fit the purpose of the problem.361

In the present context, a GLM is recommended over the standard linear regression model362

because it is more easily interpretable in dollar terms. In particular, predictions of E[Y |X]363

can be obtained easily from ln(E[Y |X]) by the simple application of the exponential function,364

exp. In contrast, predictions of E[Y |X] cannot be obtained as easily from E[ln(Y |X)], though365

methods to transform back to the original dollar scale exist. Moran et al. (2007) presents and366

compares several methods, including the naive transformation.367

The results illustrate not only how easily predictions can be obtained on the dollar scale, but368
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also provide a sense of how well each GLM performs in predicting structural retrofit costs. In369

particular, note that the gamma and inverse normal models tend to slightly overestimate costs,370

while the normal model tends to underestimate costs. The gamma model’s predictions have the371

lowest prediction error among the three models. In particular, the prediction error for the normal372

model is about 3% larger than that for the gamma model. In a later section, the application to373

federal buildings illustrates how this tradeoff between bias (accuracy) and variance (precision)374

manifests in practice.375

TOTAL OR STRUCTURAL COST376

Thus far, it is assumed that the outcome of interest is structural retrofit cost. However, a decision377

maker may be more interested in predicting the total construction cost. Table 10 presents esti-378

mates of expected out-of-sample performance of predicting each of these two outcomes, using379

the GLM with gamma distribution.380

The results suggest that the GLM-gamma can predict structural cost more accurately than it381

can predict total cost (that is, with a roughly 60% lower RMSE). Moreover, note that the RMSE382

estimate for structural cost has a smaller standard deviation than the RMSE estimate for total383

cost, and thus the estimate of prediction error is less noisy.384

Table 10. Predicted cost and expected out-of-sample performance for the GLM-Gamma in predicting
structural construction cost and total construction cost. All values in dollars per square foot (1 ft = 0.3048
m). Predicted values and RMSE estimates suggest the GLM-Gamma is better at predicting structural
cost than it is at predicting total cost.

Model Acutal cost Predicted cost RMSE σRMSE

Structural cost 36.03 36.19 40.42 11.18

Total cost 52.13 57.81 75.56 28.52

The results should be interpreted carefully. As in the preceding section, model selection is385

not appropriate because the outcomes are different. The results of model evaluation only suggest386

that predicting structural cost results in less uncertainty than predicting total cost: predicted387

values have lower RMSE and RMSE estimates have smaller variance.388

The choice between structural and total cost will depend on the outcome of interest to the389

decision maker and the decision maker’s objective for obtaining cost estimates. In the present390

context, predicting structural cost is recommended due to the lower uncertainty in prediction.391
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Structural cost estimates may be used as an order of magnitude approximation to cost in the392

planning stage. Estimates of total construction cost may be obtained by scaling strutural cost393

estimates up, as discussed in Fung et al. (2018). Table 11, which presents summary statistics394

for the ratio of total to structural cost, may be used as a reference for scaling up estimates. For395

instance, on average, total construction costs are double the structural costs.396

Table 11. Summary statistics: ratio of total to structural construction costs in training (SRCE) data.

1st quartile Mean Median 3rd quartile Max s.d.

1 2.01 1.01 1.24 320 8.88

APPLICATION TO FEDERAL BUILDINGS397

This section presents an application of the methodology for estimating seismic retrofit costs for398

a portfolio of buildings owned and leased by federal government agencies within the contiguous399

United States.400

The application is motivated by Executive Order (EO) 13717, which asks “each executive401

department and agency...to enhance resilience by reducing risk to the lives of building occupants402

and improving continued performance of essential functions following future earthquakes.” The403

estimates in this paper are not meant to be used for budget decisions. Rather, the paper presents404

a range of estimates that provide a sense of the expected order of magnitude, as well as the405

degree of uncertainty associated with the estimates.406

The application illustrates the impact of an important modeling decision: the choice of407

distribution. The predictions presented in this section use a GLM with log link function, g = ln,408

in order to easily present cost estimates in dollars per square foot. Moreover, the outcome of409

interest is assumed to be structural retrofit cost. The three choices of distribution for the outcome410

considered are the normal, the inverse normal, and the gamma.411

THE FEDERAL BUILDING DATA412

Data on federally-owned and -leased buildings is available to federal employees only from the413

General Services Administration (GSA) Federal Real Property Profile (FRPP) (GSA, 2018).414

The FRPP is a centralized database of the federal government’s inventory of land, building, and415

structure assets located throughout the United States and abroad. Each agency submits data on416
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its assets annually.417

The goal of this application is to obtain retrofit cost predictions for an actual building port-418

folio, using FRPP building data obtained by the authors for Fiscal Year 2015 (FY15). Table419

12 provides some summary statistics for the FY15 FRPP data, including average hazard level,420

total number of buildings, and average square footage by seismicity. The data only includes421

buildings within the contiguous United States.422

Table 12. Total number of buildings, mean PGA, mean building area, percent of buildings owned (rather
than leased) and percent of buildings deemed historic, by seismicity category (1 ft = 0.3048 m). Based
on FRPP building data for FY15.

Seismicity Total Buildings Mean PGA (gn) Mean Area (sq ft) Percent Owned Percent Historic

L 100403 0.04 9956 87.4% 12.69%

M 12397 0.14 4935 92.08% 12.2%

H 8725 0.31 8045 89.68% 11.99%

VH 2930 0.47 12321 93.38% 12.46%

In addition, the table lists the percent of buildings that are owned by the reporting agency423

(versus those that are leased by the agency) and the percentage of buildings that are deemed424

historic. Buildings deemed historic are those for which the FRPP Historic Status indicator lists425

the building as either a National Historic Landmark (NHL), National Register Eligible (NRE),426

or National Register Listed (NRL) building (GSA, 2015). Otherwise, the building is deemed427

non-historic.428

PROXIES FOR BUILDING AGE, HEIGHT, AND TYPE429

Some of the building characteristics needed for the predictive model are not collected for the430

FRPP (that is, the FRPP does not ask for this information). In particular, the following key431

building characteristics are not collected for the FRPP: (1) Building age or year built; (2) Num-432

ber of stories or building height; (3) Building construction type.433

Nevertheless, reasonable predictions for retrofit costs can be obtained by using the data434

in the FRPP and making some assumptions about the data that is not available. In practice,435

building owners and other decision makers should be able to easily obtain more complete and436

accurate information on building characteristics and thus obtain more accurate predictions when437

applying the predictive modeling approach.438
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Fung et al. (2018) develop an approach for obtaining proxies for the predictors that are not439

collected in the FRPP. It should be noted that this approach is not advocated as part of the440

methodology; rather, it is one way to circumvent the data limitations.441

Three disparate sources are used to proxy for building age, height, and type, as shown in442

Table 13. Note that while data on Age is available at the state level, data on Height and Type443

are only available at the Census and Hazus Region levels, respectively. Hazus categorizes the444

50 states and the District of Columbia into three Hazus Regions (East, Midwest, West) (FEMA,445

2012). Census categorizes the 50 states and the District of Columbia into four Census regions446

(Northeast, Midwest, South, West).447

Table 13. Data sources and category values for building age, height, and type proxies. “Depends on”
means these values should be known in order to determine the appropriate proxy.

Characteristic Depends on Values

Age Census Region {Pre-1950, 1950-1970, Post-1970}1

Height Census Region {Low-Rise, Mid-Rise, High-Rise}2

Type Age, Height, Hazus Region See Table 23

1 Source: Census, American Community Survey (ACS) 1-year estimates for 2010.
2 Source: Energy Information Administraion, Commerical Buildings Energy Consumption Survey

(CBECS) for 1999.
3 Source: FEMA, Hazus 2.1, General Building Stock (GBS), Tables 3A.2-3A.15 FEMA (2012).

It is worth noting that the proxy for general building age is based on housing age. While448

imperfect, the Census data on housing age is the most comprehensive source for building age449

that covers the entire United States.450

Proxies for age, height, and type are drawn from a sampling distribution as suggested in

Fung et al. (2018). For a given building in the FRPP with observed characteristics x, sample

the unobserved characteristics z = {Age, Height, Type} as:

Age, Height, Type|x ∼ p(Type|Age, Height, x)p(Height|x)p(Age|x) (5)

where p(Z|x) represents the distribution of random variable Z conditional on X = x. Eq. (5)451

represents the joint distribution of Age, Height, and Type, conditional on x. In this case, the452

relevant x is the building location (e.g., Census region or Hazus region).453

Since these features can be sampled at random, the procedure is repeated 1000 times. Thus,454

for each building, building age, height, and type are sampled 1000 times, resulting in 1000455
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“pseudo”-inventories. Predictions are generated for each “pseudo”-inventory. As a result of this456

sampling procedure, prediction intervals are easily obtained by computing empirical quantiles457

for the predictions.458

IS THERE A PENTALTY FOR DISCRETIZING AGE AND HEIGHT?459

The proxies for building age and height in Table 13 are categorical; that is, age and height460

are grouped into a small number of distinct categories. A natural question is whether there is461

a penalty to using categorical, rather than continuous, measures of age and height. This sec-462

tion compares prediction error for: (1) continuous building age and height; and (2) categorical463

building age and height.464

Table 14 presents prediction error estimates, using K-fold cross-validation with K = 10,465

assuming the outcome of interest is structural cost. The results suggest that there is almost466

no penalty (in terms of prediction error) for using categorical, rather than continuous, age and467

height. Although the results suggest using categorical measures may actually improve perfor-468

mance, caution should be taken in light of the large standard error associated with prediction469

error estimates.470

Table 14. Model evaluation: expected out-of-sample performance for GLM with three choices of distri-
bution when the outcome is structural cost in dollars per square foot (1 ft = 0.3048 m). RMSE estimates
suggest each model performs better when predicting with categorial rather than continuous building age
and height.

Model Distribution RMSE σRMSE

categorical Gamma 40.69 13.86

continuous Gamma 40.77 14.27

categorical inverse 41.24 13.27

continuous inverse 41.31 13.90

categorical Normal 41.47 13.59

continuous Normal 42.01 13.26

COST ESTIMATES FOR FEDERAL BUILDINGS471

This section presents structural retrofit cost estimates using proxies for building age, height,472

and type, as well as 95% prediction intervals. Predictions are based on the GLM with gamma473

distribution, which appears to outperform the other models based on the preceding results. All474

21



costs normalized to 2016 US dollars.475

Table 15 presents cost estimates for each of the four seismicity levels in Table 3. Note476

that costs for V H-seismicity buildings are the highest, and prediction intervals are the widest.477

Interestingly, retrofit-cost predictions for L-seismicity buildings are slightly higher than those478

for either M - or H-seismicity buildings. The results appear counterintuitive at first glance: one479

might expect that the cost of retrofitting L-seismicity buildings would be the lowest, on average.480

However, retrofit cost is a function of multiple unobserved parameters, including: the build-481

ing code the existing building is designed for; the target performance in the new code; and the482

existing versus the desired seismic detailing. The pattern of average retrofit costs being higher483

for L-seismicity buildings than for M - and H-seismicity buildings reflects the pattern in the484

training data, as shown in Table 16.485

Table 15. Predicted average structural cost and 95% prediction intervals in dollars per square foot (1
ft = 0.3048 m), with proxies for building age, height, and type, by seismicity category for GLM with
gamma distribution.

Seismicity Lower bound Mean cost Upper bound

L 12.47 24.96 43.10

M 10.56 20.07 35.81

H 10.40 19.82 35.32

VH 16.42 31.03 55.69

Table 16. Average structural cost in dollars per square foot (1 ft = 0.3048 m), as well as the top and
bottom 2.5% of costs, in the training (SRCE) data. Note the pattern of average retrofit costs being higher
for Low seismicity buildings than for Medium and High seismicity buildings.

Seismicity Percentile: 2.5% Mean Percentile: 97.5%

L 2.18 29.4 92.9

M 1.22 27.9 97.1

H 1.90 25.1 120.4

VH 2.54 55.0 227.4

One takeaway for decision makers looking for a way to prioritze which buildings to retrofit486

first is that building seismicity is an important driver of costs. The pattern reflected in the data487
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suggests that building seismicity is a proxy for the unobserved parameters that determine retrofit488

cost.489

CONCLUSION490

This paper presents a predictive modeling approach to estimating seismic retrofit costs from491

historical data. The predictive model can be used to obtain quick, order of magnitude esti-492

mates. However, obtained estimates are expected to have a higher degree of uncertainty than493

professional engineering consulting estimates. Moreover, while the approach is applicable to494

estimating retrofit costs for a single building, the high degree of uncertainty makes it more495

applicable for a portfolio of buildings.496

Several modeling choices are available to decision makers. First, the paper explores the497

choice of distribution for the outcome of interest and suggests that a gamma distribution is498

used in the context of predicting costs. Second, with regard to the choice between standard499

linear regression and GLM, the recommendation is a GLM because predictions can be easily500

expressed in dollars per square foot. Third, the choice of total construction cost or structural501

retrofit cost for the outcome of interest will depend on the decision maker’s objective. The lower502

degree of uncertainty in predicting structural retrofit costs motivates its recommendation as the503

preferred outcome of interest.504

The application to an actual building portfolio illustrates how modeling choices affect cost505

estimates. In particular, the GLM with gamma distribution appears to provide better out-of-506

sample performance than the GLM with normal or inverse normal distributions, regardless of507

whether building age and height are categorical or continuous. The application illustrates an508

approach for obtaining proxies for predictors that are unavailable and produces cost estimates509

by seismicity category.510

The results demonstrate the flexibility and applicability of the predictive modeling approach511

for seismic risk mitigation. In particular, the illustration of key modeling decisions and the512

tradeoffs associated with those decisions should be valuable for owners of building portfolios513

during the planning phase of a potential seismic retrofit program. An important modeling deci-514

sion that is not addressed in this paper is the question of how to choose predictors for the model.515

This problem is known as feature selection and is beyond the scope of the current paper; Fung516

et al. (2017) and Fung et al. (2019) provide a more thorough treatment of the feature selection517

problem for predicting seismic retrofit costs.518
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Finally, this paper only considers construction costs. In addition to the construction costs519

mentioned in the section “The Training Data,” retrofits are likely to incur other costs, including520

the costs to relocate building occupants, project financing costs, and the costs of disrupting521

work. The incorporation of these other costs is important for a complete picture of retrofit costs522

and should be studied in the future.523

Disclaimer524

NIST policy is to use the International System of Units (metric units) in all its publications. In525

this report, however, information is presented in U.S. Customary Units (inch-pound), as this is526

the preferred system of units in the U.S. earthquake engineering industry.527
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APPENDIX589

This appendix presents supplementary material. Table A1 summarizes the shares of each build-590

ing group in the training (SRCE) data.591

Table A1. Building groups and their shares in SRCE data.

Building Group Count Percentage

1 459 30.08%

2 87 5.70%

3 102 6.68%

4 357 23.39%

5 74 4.85%

6 39 2.56%

7 107 7.01%

8 301 19.72%

Cofficient estimates obtained by training the models on the entire training data are presented592

in Table A2. The table presents coefficient estimates from training the standard linear regres-593

sion model, Eq. (1), and the GLM with gamma distribution, for the two outcomes of interest:594

structural retrofit cost and total construction cost.595

The coefficient estimates represent the estimator, f̂ , for each model and thus may be applied596

to obtain predictions, Ŷ = f̂(Xnew), for a set of predictors, Xnew, representing a new building.597

These coefficient estimates may only be applied to obtain predictions if the data in Xnew598

has the same structure as the data used to train the model in this paper. Most importantly, the599

measure of seismicity for the new building should coincide with the measure of seismicity used600

to train the models: a population-weighted average of county-level PGA as described in Fung601

et al. (2017). If a decision maker would like to use a different measure of seismicity, the same602

procedure presented in this paper can be used.603

Moreover, the results in this paper are obtained by training the models on the raw SRCE604

data, with costs normalized to 1993 California dollars. Predictions obtained from the trained605

models are then normalized to 2016 national dollars using the ENR Building Construction Index606

(ENR, 2017). This paper uses the index value BCI2016 = 1.669, as described in Fung et al.607

(2017).608
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Table A2. Coefficient estimates from training the OLS model in Eq. (1) and the GLM Eq. (2), for the
two outcomes of interest. Standard errors in parentheses.

Structural cost per sf Structural cost per sf Total cost per sf Total cost per sf

OLS glm: Gamma OLS glm: Gamma

link = log link = log

Area (β1) −0.182 (0.030) −0.135 (0.029) −0.105 (0.032) −0.073 (0.039)

Age (β2) 0.126 (0.067) 0.073 (0.066) 0.188 (0.072) 0.143 (0.088)

Stories (β3) 0.266 (0.053) 0.204 (0.052) 0.266 (0.057) 0.265 (0.069)

Occupancy: TR (β4) 0.218 (0.074) 0.152 (0.073) −0.204 (0.080) −0.252 (0.097)

Occupancy: IP (β4) −0.301 (0.094) −0.249 (0.093) −0.659 (0.101) −0.596 (0.122)

BG: 2 (βb) −0.693 (0.141) −0.423 (0.139) −0.214 (0.151) 0.011 (0.183)

BG: 3 (βb) −0.445 (0.147) −0.336 (0.145) −0.314 (0.158) −0.199 (0.192)

BG: 4 (βb) 0.182 (0.103) 0.192 (0.102) 0.220 (0.111) 0.177 (0.135)

BG: 5 (βb) 0.034 (0.159) 0.126 (0.157) 0.135 (0.171) 0.194 (0.208)

BG: 6 (βb) −0.924 (0.201) −0.769 (0.199) −0.833 (0.216) −0.781 (0.263)

BG: 7 (βb) 0.369 (0.139) 0.253 (0.137) 0.322 (0.149) 0.231 (0.181)

BG: 8 (βb) −0.216 (0.107) −0.018 (0.106) −0.065 (0.115) 0.174 (0.140)

Seismicity: M (βs) −0.040 (0.185) −0.081 (0.183) −0.037 (0.199) −0.038 (0.242)

Seismicity: H (βs) −0.087 (0.185) −0.189 (0.182) −0.106 (0.198) −0.065 (0.241)

Seismicity: VH (βs) 0.423 (0.181) 0.314 (0.179) 0.386 (0.194) 0.465 (0.236)

Performance: DC (βp) −0.069 (0.193) −0.151 (0.190) 0.006 (0.207) 0.011 (0.251)

Performance: IO (βp) 0.133 (0.201) −0.051 (0.199) 0.052 (0.216) −0.121 (0.263)

Historic (β5) 0.564 (0.109) 0.792 (0.108) 0.910 (0.117) 0.992 (0.143)

Census Region: Midwest (β6) −0.148 (0.151) −0.139 (0.149) −0.131 (0.162) −0.065 (0.197)

Census Region: Northeast (β6) −0.110 (0.169) −0.154 (0.167) 0.003 (0.182) 0.004 (0.221)

Census Region: South (β6) 0.537 (0.137) 0.476 (0.136) 0.553 (0.147) 0.505 (0.179)

M x DC (βsp) 0.041 (0.250) 0.096 (0.246) 0.465 (0.268) 0.346 (0.325)

H x DC (βsp) 0.351 (0.255) 0.624 (0.252) 0.221 (0.274) 0.300 (0.333)

VH x DC (βsp) 0.200 (0.233) 0.343 (0.230) 0.186 (0.250) 0.044 (0.304)

M x IO (βsp) 0.090 (0.315) 0.103 (0.311) −0.048 (0.338) 0.091 (0.411)

V x IO (βsp) 0.425 (0.296) 0.518 (0.292) 0.409 (0.318) 0.318 (0.386)

VH x IO (βsp) 0.372 (0.237) 0.584 (0.234) 0.717 (0.255) 0.605 (0.310)

Constant (β0) 3.420 (0.440) 3.600 (0.434) 2.840 (0.472) 3.100 (0.573)

Observations 1,083 1,083 1,083 1,083

Notes: ’BG’ means building group.

The terms ’M x DC,’ ..., ’VH x IO’ are interactions between seismicity and performance objective.

1 ft = 0.3048 m.
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To illustrate, assume a decision maker has data for a new building Xnew that conforms with609

the assumptions used to train the models in Table A2. Suppose Area = 1000, Age = 20, and610

Stories = 5. Moreover, suppose Occupancy is V , the building group (BG) is 1, Seismicity is L,611

the performance objective is LS, the building is not deemed historic (i.e., Historic = No), and612

the Census Region is the West. Thus, the coefficients for these latter predictors are all 0 and the613

prediction is based on:614

Xnewβ̂ = β̂0 + ln(Area)β̂1 + β̂2 ln(Age) + β̂3 ln(Stories) (6)

In particular, the predicted average structural cost (in dollars per square foot) using the GLM615

with gamma distribution is ̂E[Y |Xnew] = exp(Xnewβ̂) = exp{3.6−0.135 ln(1000)+0.073 ln(20)+616

0.204 ln(5)} ×BCI2016 = 24.89002 ×BCI2016 = 41.55.617

Finally, the coefficient estimates presented in this appendix should not interpreted as repre-618

senting the “true” model of retrofit costs. Rather, they are the outcome of training the models619

in Eq. (1) and Eq. (2) for the specific purpose of making retrofit cost predictions as accurately620

as possible from observable building characteristics.621
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